Monday, April 12, 2021

Math behind Machine Learning - An introductory article on the usage of mathematics and statistics as the foundation of Machine Learning

 


        Math behind Machine Learning

 

* If one wants to implement existing machine learning algorithms from scratch or if someone wants to devise newer machine learning algorithms , then one would require a profound knowledge of probability , linear algebra , linear programming and multivariable calculus

 

* Along with that one may also need to translate math into a form of working code which means that one needs to have a good deal of sophisticated computing skills

 

* This article is an introduction which would help someone in understanding of the mechanics of machine learning and thereafter describe how to translate math basics into usable code

 

* If one would like to apply the existing machine learning knowledge for implementation of practical purposes and practical projects , then one can leverage the best of possibilities of machine learning over datasets using R language and Python language's software libraries using some basic knowledge of math , statistics and programming as Machine learning's core foundation is built upon skills in all of these languages

 

* Some of the things that can be accomplished with a clearer understanding and grasp over these languages is the following :

 

1) Performance of Machine Learning experiments using R and Python language

2) Knowledge upon Vectors , Variables and Matrices

3) Usage of Descriptive Statistics techniques

4) Knowledge of statistical methods like Mean , Median , Mode , Standard Deviation and other important parameters for judging or evaluating a model

5) Understanding the capabilities and methods in which Machine Learning could be put to work which would help in making better predictions etc

 

No comments:

Post a Comment